激情男人五月天中文视频,日本高清在线一区二区三区,人人做人人爱国产97,综合激情丁香久久狠狠

<center id="gs2mc"></center>
    <strike id="gs2mc"></strike>
    <cite id="gs2mc"></cite>
  • <strike id="gs2mc"><noscript id="gs2mc"></noscript></strike>
  • 首頁> 高等繼續(xù)教育大學(xué)生在線> 成考動(dòng)態(tài) > 正文

    成人高考高起點(diǎn)數(shù)學(xué)(理)難點(diǎn):指數(shù)函數(shù)和對(duì)數(shù)函數(shù)

    指數(shù)函數(shù)、對(duì)數(shù)函數(shù)是成人高考考查的重點(diǎn)內(nèi)容之一,對(duì)于數(shù)學(xué)這一科目,需要各位考生日積月累,細(xì)心也是做題的關(guān)鍵,平時(shí)可以多練習(xí)歷年真題,針對(duì)歷年高頻重點(diǎn)練題。下面是小編為大家整理的指數(shù)函數(shù)與對(duì)數(shù)函數(shù)的考生難點(diǎn),一起來看看吧。

    成人高考高起點(diǎn)數(shù)學(xué)(理)難點(diǎn):指數(shù)函數(shù)和對(duì)數(shù)函數(shù)

    難點(diǎn)

    (★★★★★)設(shè)f(x)=log2 ,F(x)= +f(x).

    (1)試判斷函數(shù)f(x)的單調(diào)性,并用函數(shù)單調(diào)性定義,給出******;

    (2)若f(x)的反函數(shù)為f-1(x),******:對(duì)任意的自然數(shù)n(n≥3),都有f-1(n)> ;

    (3)若F(x)的反函數(shù)F-1(x),******:方程F-1(x)=0有惟一解.

    案例探究

    [例1]已知過原點(diǎn)O的一條直線與函數(shù)y=log8x的圖象交于A、B兩點(diǎn),分別過點(diǎn)A、B作y軸的平行線與函數(shù)y=log2x的圖象交于C、D兩點(diǎn).

    (1)******:點(diǎn)C、D和原點(diǎn)O在同一條直線上;

    (2)當(dāng)BC平行于x軸時(shí),求點(diǎn)A的坐標(biāo).

    命題意圖:本題主要考查對(duì)數(shù)函數(shù)圖象、對(duì)數(shù)換底公式、對(duì)數(shù)方程、指數(shù)方程等基礎(chǔ)知識(shí),考查學(xué)生的分析能力和運(yùn)算能力.屬★★★★級(jí)題目.

    知識(shí)依托:(1)******三點(diǎn)共線的方法:kOC=kOD.

    (2)第(2)問的解答中蘊(yùn)涵著方程思想,只要得到方程(1),即可求得A點(diǎn)坐標(biāo).

    錯(cuò)解分析:不易考慮運(yùn)用方程思想去解決實(shí)際問題.

    技巧與方法:本題第一問運(yùn)用斜率相等去******三點(diǎn)共線;第二問運(yùn)用方程思想去求得點(diǎn)A的坐標(biāo).

    (1)******:設(shè)點(diǎn)A、B的橫坐標(biāo)分別為x1、x2,由題意知:x1>1,×2>1,則A、B縱坐標(biāo)分別為log8x1,log8x2.因?yàn)锳、B在過點(diǎn)O的直線上,所以 ,點(diǎn)C、D坐標(biāo)分別為(x1,log2x1),(x2,log2x2),由于log2x1= = 3log8x2,所以O(shè)C的斜率:k1= ,

    OD的斜率:k2= ,由此可知:k1=k2,即O、C、D在同一條直線上.

    (2)解:由BC平行于x軸知:log2x1=log8x2 即:log2x1= log2x2,代入x2log8x1=x1log8x2得:x13log8x1=3x1log8x1,由于x1>1知log8x1≠0,∴x13=3×1.又x1>1,∴x1= ,則點(diǎn)A的坐標(biāo)為( ,log8 ).

    [例2]在xOy平面上有一點(diǎn)列P1(a1,b1),P2(a2,b2),…,Pn(an,bn)…,對(duì)每個(gè)自然數(shù)n點(diǎn)Pn位于函數(shù)y=2000( )x(0

    (1)求點(diǎn)Pn的縱坐標(biāo)bn的表達(dá)式;

    (2)若對(duì)于每個(gè)自然數(shù)n,以bn,bn+1,bn+2為邊長能構(gòu)成一個(gè)三角形,求a的取值范圍;

    (3)設(shè)Cn=lg(bn)(n∈N*),若a取(2)中確定的范圍內(nèi)的最小整數(shù),問數(shù)列{Cn}前多少項(xiàng)的和最大?試說明理由.

    命題意圖:本題把平面點(diǎn)列,指數(shù)函數(shù),對(duì)數(shù)、最值等知識(shí)點(diǎn)揉合在一起,構(gòu)成一個(gè)思維難度較大的綜合題目,本題主要考查考生對(duì)綜合知識(shí)分析和運(yùn)用的能力.屬★★★★★級(jí)

    題目

    知識(shí)依托:指數(shù)函數(shù)、對(duì)數(shù)函數(shù)及數(shù)列、最值等知識(shí).

    錯(cuò)解分析:考生對(duì)綜合知識(shí)不易駕馭,思維難度較大,找不到解題的突破口.

    技巧與方法:本題屬于知識(shí)綜合題,關(guān)鍵在于讀題過程中對(duì)條件的思考與認(rèn)識(shí),并會(huì)運(yùn)用相關(guān)的知識(shí)點(diǎn)去解決問題.

    解:(1)由題意知:an=n+ ,∴bn=2000( ) .

    (2)∵函數(shù)y=2000( )x(0bn+1>bn+2.則以bn,bn+1,bn+2為邊長能構(gòu)成一個(gè)三角形的充要條件是bn+2+bn+1>bn,即( )2+( )-1>0,解得a<-5(1+ )或a>5( -1).∴5( -1)

    (3)∵5( -1)

    ∴bn=2000( ) .數(shù)列{bn}是一個(gè)遞減的正數(shù)數(shù)列,對(duì)每個(gè)自然數(shù)n≥2,Bn=bnBn-1.于是當(dāng)bn≥1時(shí),Bn

    錦囊妙計(jì)

    本難點(diǎn)所涉及的問題以及解決的方法有:

    (1)運(yùn)用兩種函數(shù)的圖象和性質(zhì)去解決基本問題.此類題目要求考生熟練掌握函數(shù)的圖象和性質(zhì)并能靈活應(yīng)用.

    (2)綜合性題目.此類題目要求考生具有較強(qiáng)的分析能力和邏輯思維能力.

    (3)應(yīng)用題目.此類題目要求考生具有較強(qiáng)的建模能力.

    1
    意向表
    2
    學(xué)習(xí)中心老師電話溝通
    3
    查看評(píng)估報(bào)告
    1、年齡階段

    18~23周歲

    24~32周歲

    33~40周歲

    其他

    2、當(dāng)前學(xué)歷

    高中及以下

    中專

    大專

    其他

    3、提升學(xué)歷目標(biāo)

    工作就業(yè)

    報(bào)考公務(wù)員

    落戶/居住證

    其他

    4、意向?qū)W習(xí)方式

    自學(xué)考試

    成人高考

    開放大學(xué)

    報(bào)考所在地
    *
    *
    *

    111
    授權(quán)院校
    ×
    關(guān)閉
    編輯推薦

    1、凡標(biāo)注中國教育在線原創(chuàng)文章,轉(zhuǎn)載請(qǐng)注明出處中國教育在線及本文鏈接。

    2、本文鏈接:http://thefoodanddrinkadventure.com/ceici/e2-chengkao-223406.shtml

    3、如果你希望被中國教育在線報(bào)道,請(qǐng)發(fā)郵件到jijiao@eol.cn告訴我們。

    免責(zé)聲明:

    1、 凡本站注明“稿件來源:中國教育在線”的所有文字、圖片和音視頻稿件,版權(quán)均屬本網(wǎng)所有,任何媒體、網(wǎng)站或個(gè)人未經(jīng)本網(wǎng)協(xié)議授權(quán)不得轉(zhuǎn)載、鏈接、轉(zhuǎn)貼或以其他方式復(fù)制發(fā)表。已經(jīng)本站協(xié)議授權(quán)的媒體、網(wǎng)站,在下載使用時(shí)必須注明“稿件來源:中國教育在線”,違者本站將依法追究責(zé)任。

    2、本站注明稿件來源為其他媒體的文/圖等稿件均為轉(zhuǎn)載稿,本站轉(zhuǎn)載出于非商業(yè)性的教育和科研之目的,并不意味著贊同其觀點(diǎn)或證實(shí)其內(nèi)容的真實(shí)性。如轉(zhuǎn)載稿涉及版權(quán)等問題,請(qǐng)作者在兩周內(nèi)速來電或來函聯(lián)系。

    相關(guān)資訊

    專題指導(dǎo)

    `