想要報考2023年成人高考工學、理學(生物科學類、地理科學類、環(huán)境科學類、心理學類四個一級學科除外)專業(yè)的考生注意了,2023年成人高考高數(shù)(一)考試大綱如下,一起來了解吧!
復習考試內(nèi)容
一、極限和連續(xù)
(一)極限
1.知識范圍
(1)數(shù)列極限的概念與性質(zhì)
數(shù)列極限的定義
唯一性有界性四則運算法則夾逼定理單調(diào)有界數(shù)列極限存在定理。
(2)函數(shù)極限的概念與性質(zhì)
函數(shù)在一點處極限的定義;左、右極限及其與極限的關系;x趨于無窮(x→∞,x→﹢∞,x→﹣∞)時函數(shù)的極限;唯一性;四則運算法則;夾逼定理。
(3)無窮小量與無窮大量
無窮小量與無窮大量的定義;無窮小量與無窮大量的關系;無窮小量的性質(zhì);無窮小量的比較。
(4)兩個重要極限
2.要求
(1)理解極限的概念(對極限定義中“ε-N”“ε-δ”“ε-M”等形式的描述不作要求)。會求函數(shù)在一點處的左極限與右極限,了解函數(shù)在一點處極限存在的充分必要條件。
(2)了解極限的有關性質(zhì),掌握極限的四則運算法則。
(3)理解無窮小量、無窮大量的概念,掌握無窮小量的性質(zhì)、無窮小量與無窮大量的關系.會進行無窮小量的比較(高階、低階、同階和等價)。會運用等價無窮小量代換求極限。
(4)熟練掌握用兩個重要極限求極限的方法。
(二)連續(xù)
1.知識范圍
(1)函數(shù)連續(xù)的概念
函數(shù)在一點處連續(xù)的定義;左連續(xù)與右連續(xù);函數(shù)在一點處連續(xù)的充分必要條件;函數(shù)的間斷點。
(2)函數(shù)在一點處連續(xù)的性質(zhì)
連續(xù)函數(shù)的四則運算;復合函數(shù)的連續(xù)性;反函數(shù)的連續(xù)性
(3)閉區(qū)間上連續(xù)函數(shù)的性質(zhì)
有界性定理;最大值與最小值定理;介值定理(包括零點定理)。
(4)初等函數(shù)的連續(xù)性
2.要求·
(1)理解函數(shù)在一點處連續(xù)與間斷的概念,理解函數(shù)在一點處連續(xù)與極限存在的關系,掌握函數(shù)(含分段函數(shù))在一點處的連續(xù)性的判斷方法。
(2)會求函數(shù)的間斷點。
(3)掌握在閉區(qū)間上連續(xù)函數(shù)的性質(zhì),會用介值定理推證一些簡單命題。
(4)理解初等函數(shù)在其定義區(qū)間上的連續(xù)性,會利用連續(xù)性求極限?!?/p>
二、一元函數(shù)微分學
(一)導數(shù)與微分
1.知識范圍
(1)導數(shù)概念
導數(shù)的定義;左導數(shù)與右導數(shù);函數(shù)在一點處可導的充分必要條件;導數(shù)的幾何意義與物理意義;可導與連續(xù)的關系。
(2)求導法則與導數(shù)的基本公式
導數(shù)的四則運算;反函數(shù)的導數(shù);導數(shù)的基本公式。
(3)求導方法
復合函數(shù)的求導法;隱函數(shù)的求導法;對數(shù)求導法;由參數(shù)方程確定的函數(shù)的求導法;求分段函數(shù)的導數(shù)。
(4)高階導數(shù)
高階導數(shù)的定義;高階導數(shù)的計算。
(5)微分
微分的定義;微分與導數(shù)的關系;微分法則;一階微分形式不變性。
2.要求
(1)理解導數(shù)的概念及其幾何意義,了解可導性與連續(xù)性的關系,掌握用定義求函數(shù)在一點處的導數(shù)的方法。
(2)會求曲線上一點處的切線方程與法線方程。
(3)熟練掌握導數(shù)的基本公式、四則運算法則及復合函數(shù)的求導方法,會求反函數(shù)的導數(shù)。
(4)掌握隱函數(shù)求導法、對數(shù)求導法以及由參數(shù)方程所確定的函數(shù)的求導方法,會求分段函數(shù)的導數(shù)。
(5)理解高階導數(shù)的概念,會求簡單函數(shù)的n階導數(shù)。
(6)理解函數(shù)的微分概念,掌握微分法則,了解可微與可導的關系,會求函數(shù)的一階微分。
(二)微分中值定理及導數(shù)的應用
1.知識范圍
(1)羅爾(Rolle) 定理;拉格朗日(Lagrange) 中值定理。
(2) 洛必達(L'Hospital) 法則
(3)函數(shù)單調(diào)性的判定法
(4)函數(shù)的極值與極值點、最大值與最小值
(5)曲線的凹凸性、拐點
(6)曲線的水平漸近線與鉛直漸近線
2.要求
(1)理解羅爾定理、拉格朗日中值定理及它們的幾何意義。會用拉格朗日中值定理證明簡單的不等式。
(2)熟練掌握用洛必達法則求未定式的極限的方法。
(3)掌握利用導數(shù)判定函數(shù)的單調(diào)性及求函數(shù)的單調(diào)增、減區(qū)間的方法,會利用函數(shù)的單調(diào)性證明簡單的不等式。
(4)理解函數(shù)極值的概念.掌握求函數(shù)的駐點、極值點、極值、最大值與最小值的方法,會解簡單的應用問題。
(5)會判斷曲線的凹凸性,會求.曲線的拐點。
(6)會求曲線的水平漸近線與鉛直漸近線。
三、一元函數(shù)積分學
(一)不定積分
1.知識范圍
(1)不定積分
原函數(shù)與不定積分的定義;原函數(shù)存在定理;不定積分的性質(zhì)
(2)基本積分公式
(3)換元積分法
第一換元法(湊微分法);第二換元法。
(4)分部積分法
(5)一些簡單有理函數(shù)的積分
2.要求
(1)理解原函數(shù)與不定積分的概念及其關系,掌握不定積分的性質(zhì),了解原函數(shù)存在定理。
(2)熟練掌握不定積分的基本公式。
(3)熟練掌握不定積分第一換元法,掌握第二換元法(限于三角代換與簡單的根式代換)。
(4)熟練掌握不定積分的分部積分法。
(5)會求簡單有理函數(shù)的不定積分。
(二)定積分
1.知識范圍
(1)定積分的概念
定積分的定義及其幾何意義;可積條件
(2)定積分的性質(zhì)
(3)定積分的計算
變上限積分;牛頓-萊布尼茨(Newton-Leibniz) 公式;換元積分法;分部積分法。
(4)無窮區(qū)間的反常積分
(5)定積分的應用
平面圖形的面積;旋轉(zhuǎn)體的體積。
2.要求
(1)理解定積分的概念及其幾何意義,了解函數(shù)可積的條件。
(2)掌握定積分的基本性質(zhì)。
(3)理解變上限積分是變上限的函數(shù),掌握對變上限積分求導數(shù)的方法。
(4)熟練掌握牛頓-萊布尼茨公式。
(5)掌握定積分的換元積分法與分部積分法。
(6)理解無窮區(qū)間的反常積分的概念,掌握其計算方法。
(7)掌握直角坐標系下用定積分計算平面圖形的面積以及平面圖形繞坐標軸旋轉(zhuǎn)所生成的旋轉(zhuǎn)體的體積。
四、空間解析幾何
(一)平面與直線
1.知識范圍
(1)常見的平面方程
點法式方程;一般式方程。
(2)兩平面的位置關系(平行、垂直)
(3)空間直線方程
標準式方程(又稱對稱式方程或點向式方程);一般式方程。
(4)兩直線的位置關系(平行、垂直)
(5)直線與平面的位置關系(平行、垂直和直線在平面上)
2.要求
(1)會求平面的點法式方程、一般式方程.會判定兩平面的垂直、平行。
(2)了解直線的一般式方程,會求直線的標準式方程.會判定兩直線平行、垂直。
(3)會判定直線與平面間的關系(垂直、平行、直線在平面上)。
(二)簡單的二次曲面
1.知識范圍
球面;母線平行于坐標軸的柱面;旋轉(zhuǎn)拋物面;圓錐面;橢球面。
2.要求
了解球面、母線平行于坐標軸的柱面、旋轉(zhuǎn)拋物面、圓錐面和橢球面的方程及其圖形。
五、多元函數(shù)微積分學
(一)多元函數(shù)微分學
1.知識范圍
(1)多元函數(shù)
多元函數(shù)的定義;二元函數(shù)的幾何意義;二元函數(shù)極限與連續(xù)的概念。
(2)偏導數(shù)與全微分
偏導數(shù);全微分;二階偏導數(shù)。
(3)復合函數(shù)的偏導數(shù)
(4)隱函數(shù)的偏導數(shù)
(5)二元函數(shù)的無條件極值與條件極值
2.要求
(1)了解多元函數(shù)的概念、二元函數(shù)的幾何意義。會求二元函數(shù)的表達式及定義域。了解二元函數(shù)的極限與連續(xù)概念(對計算不作要求)。
(2)理解偏導數(shù)概念,了解偏導數(shù)的幾何意義,了解全微分概念,了解全微分存在的必要條件與充分條件。
(3)掌握二元函數(shù)的一、二階偏導數(shù)計算方法。
(4)掌握復合函數(shù)一階偏導數(shù)的求法。
(5)會求二元函數(shù)的全微分。
(6)掌握由方程F(X,y,z)=0所確定的隱函數(shù)x=z(z,y)的一階偏導數(shù)的計算方法。
(7)會求二元函數(shù)的無條件極值。會用拉格朗日乘數(shù)法求二元函數(shù)的條件極值。
(二)二重積分
1.知識范圍
(1)二重積分的概念
二重積分的定義;二重積分的幾何意義。
(2)二重積分的性質(zhì)
(3)二重積分的計算
(4)二重積分的應用
2.要求
(1)理解二重積分的概念及其性質(zhì)。
(2)掌握二重積分在直角坐標系及極坐標系下的計算方法。
(3)會用二重積分解決簡單的應用問題(限于空間封閉曲面所圍成的有界區(qū)域的體積、平面薄板的質(zhì)量)。
六、無窮級數(shù)
(一)數(shù)項級數(shù)
1.知識范圍
(1)數(shù)項級數(shù)
數(shù)項級數(shù)的概念;級數(shù)的收斂與發(fā)散;級數(shù)的基本性質(zhì);級數(shù)收斂的必要條件。
(2)正項級數(shù)收斂性的判別法
比較判別法;比值判別法。
(3)任意項級數(shù)
交錯級數(shù);絕對收斂;條件收斂;萊布尼茨判別法。
2.要求
(1)理解級數(shù)收斂、發(fā)散的概念.掌握級數(shù)收斂的必要條件,了解級數(shù)的基本性質(zhì)。
(2)會用正項級數(shù)的比值判別法與比較判別法。
(3)掌握幾何級數(shù)的收斂性。
(4)了解級數(shù)絕對收斂與條件收斂的概念,會使用萊布尼茨判別法。
(二)冪級數(shù)
1.知識范圍
(1)冪級數(shù)的概念
收斂半徑;收斂區(qū)間。
(2)冪級數(shù)的基本性質(zhì)
(3)將簡單的初等函數(shù)展開為冪級數(shù)
2.要求
(1)了解冪級數(shù)的概念。
(2)了解冪級數(shù)在其收斂區(qū)間內(nèi)的基本性質(zhì)(和、差、逐項求導與逐項積分)。
(3)掌握求冪級數(shù)的收斂半徑、收斂區(qū)間(不要求討論端點)的方法。
(4) 會運用麥克勞林(Ma-claurin) 公式,將一些簡單的初等函數(shù)展開為想或x-x?的冪級數(shù)。
七、常微分方程
(一)一階微分方程
1.知識范圍
(1)微分方程的概念
微分方程的定義;階;解;通解;初始條件;特解。
(2)可分離變量的方程
(3)一階線性方程
2.要求
(1)理解微分方程的定義,理解微分方程的階、解、通解、初始條件和特解。
(2)掌握可分離變量方程的解法。
(3)掌握一階線性方程的解法。
(二)二階線性微分方程
1.知識范圍
(1)二階線性微分方程解的結(jié)構(gòu)
(2)二階常系數(shù)齊次線性微分方程
(3)二階常系數(shù)非齊次線性微分方程
2.要求
(1)了解二階線性微分方程解的結(jié)構(gòu)。
(2)掌握二階常系數(shù)齊次線性微分方程的解法。
(3)掌握二階常系數(shù)非齊次線性微分方程的解法(自由項限定為f(x)=Pn(x)eax,其中Pn(X)為x的n次多項式,a為實常數(shù))。
18~23周歲
24~32周歲
33~40周歲
其他
高中及以下
中專
大專
其他
工作就業(yè)
報考公務員
落戶/居住證
其他
自學考試
成人高考
開放大學